Uniform approximation of functions by Meyer-König and Zeller operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation by Bézier type of Meyer-König and Zeller operators

In this paper, we give direct, inverse and equivalence approximation theorems for the Bézier type of Meyer–König and Zeller operator with unified Ditzian–Totik modulus ωφλ( f, t) (0 ≤ λ ≤ 1). c © 2007 Published by Elsevier Ltd

متن کامل

Approximation by Kantorovich Type Generalization of Meyer- König and Zeller Operators

In this study, we define a Kantorovich type generalization of W. MeyerKönig and K. Zeller operators and we will give the approximation properties of these operators with the help of Korovkin theorems. Then we compute the approximation order by modulus of continuity.

متن کامل

On a New Type of Meyer-konig and Zeller Operators

In this present paper, we introduce a new and simple integral modification of the Meyer-Konig and Zeller Bezier type operators and study the rate of convergence for functions of bounded variation. Our result improves and corrects the results of Guo (J. Approx. Theory, 56 (1989), 245–255 ), Zeng (Comput. Math. Appl., 39 (2000), 1–13; J. Math. Anal. Appl., 219 (1998), 364–376), etc.

متن کامل

On the Approximation Properties of q-Laguerre type Modification of Meyer König and Zeller Operators

In the present paper, we introduce a Laguerre type positive linear operators based on the q-integers including the q-Meyer König and Zeller operators defined by Doğru and Duman in [7]. Then we obtain some results about Korovkin type approximation properties and rates of convergence for this generalization. Key-Words: Positive linear operators, q-Meyer König and Zeller operators, qLaguerre polyn...

متن کامل

Kantrovich Type Generalization of Meyer-König and Zeller Operators via Generating Functions

In the present paper, we study a Kantorovich type generalization of Meyer-König and Zeller type operators via generating functions. Using Korovkin type theorem we first give approximation properties of these operators defined on the space C [0, A] , 0 < A < 1. Secondly, we compute the rate of convergence of these operators by means of the modulus of continuity and the elements of the modified L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2012

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2012.03.060